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Key Points

* FEA-powered bionic leg that moves, feels, and reacts like
muscle. Bridging artificial actuation and biological performance.
. .  System showed biological-like behaviors: compliant, nonlinear,
Leg Jumplng and strongly coupled
* Initial goal: make the leg jump — simple in idea, complex in
dynamics

» Simulation attempts failed: standard rigid-body engines

8 .
l Video S.1. couldn’t capture soft behavior

— Triggered the central question: How can softness be simulated with physical consistency?

Dong, et al. IEEE Transactions on Robotics (2025).
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Bionic Design System Modeling and Simulation Applications

Equivalent Dynamics
via Rigid Simulator
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Grasp (Pair 1) Rotate (Pair 1) Grasp (Pair 2) Rotate (Pair 2) L% — = = E -
Gazebo SoMo With MuJoCo OpenSim MyoSim I
Nathan Koenig, et al, 2004 Graule, et al, 2021 Vaxenburg, et al, 2025 Scott, et al, 2007 Wang, et al, 2022 '
ZuNA, MROSEEERUF Pybullet?5 52 IR, BRIRRIZZE MuloCoZE 5% 5] EMNFENT, KATLTHR  ETMuloCo+RLEEAN|
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TABLE I
COMPARISON OF DIFFERENT SIMULATION FRAMEWORKS
Framework Modeling Approach Physics Complexity Kinematic Loop R-S Hybrid Robots DMR
PyBullet/Gazebo rigid-body low X X X
Webots rigid-body low X X X
Elastica Cosserat rods medium X X v
SOFA FEM, finite element method high v v v
SoMo/SoMoGym rigid-body low X v v
SoftManiSim rigid-body + Cosserat medium X v v
OpenSim rigid-body + muscle model medium-high v v X
IMuJoCo/Myo.Slm rigid-body + muscle model medium v v X |
quiMus rigid-body equivalence low 4 (4 [

R-S = rigid-soft; DMR = dynamic mass redistribution (in this work).


https://ieeexplore.ieee.org/author/37347676200

. What Problems Does EquiMus Solve?

EquiMus addresses four long-standing pain points in musculoskeletal robot simulation:

1. Soft actuators are difficult to model—especially with dynamic mass redistribution

Most simulators approximate muscles as massless springs, leading to incorrect dynamics.
-> EquiMus preserves actuator inertia, elasticity, damping, and work through an energy-equivalent
formulation.

2. Musculoskeletal systems contain kinematic loops

URDF/PyBullet cannot represent multi-joint muscles or loop closures.
-> EquiMus uses MJCF with automatically generated constraints to model loops safely and robustly.

3. High-fidelity soft-body simulation is too slow for control & RL

FEM and Cosserat rod models are accurate but far from real time.
-> EquiMus achieves MuJoCo-level performance (>140x real-time) while retaining physical consistency.

4. No unified workflow from CAD - simulation - real robot

Current workflows require hand-built hacks and produce inconsistent dynamics.
- EquiMus provides a clean, reproducible end-to-end pipeline, including calibration and sim-to-real
examples.
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Comparison of Simulated and Theoretical Joint Angles
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61 / 92 91 / 92 91 / 92

RMSE(rad)  0.00096 / 0.00574 0.00094 / 0.00586 0.01693 / 0.03000
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MaxAE(rad) 0.00369 / 0.01452 0.00379 / 0.01559 0.04673 / 0.08805
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Results | EquiMus Implementation on a bionic robotic legq

joqoy [eay

We proposed EquiMus, an unified energy-equivalent dynamics and simulation
algorithm for the rigid-soft musculoskeletal robots with linear elastic actuators.
The method captures dynamic mass redistribution, supports loop-closure
constraints in MuJoCo, and remains real-time capable.

Bridge Soft and Rigid
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Energy-consistent discretization preserves the overall system dynamics.

A light-weight implementation

The soft actuator is discretized into a 3—2-1 configuration:

3 Mass Points: capture inertia distribution.

2 Linear Actuators: represent elastic and damping behavior.

1 Constraint: enforces equal elongation, preserving symmetry and energy consistency.

Downstream Applicatoin
Example including PID auto-tuning, model-based control, and RL tasks
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[EN] EquiMus fakes how nature uses energy to control motion — through an energy-equivalent formulation that
turns physics intuition into simulation reality. That is the “fake it until you make it” philosophy in the energy domain.

) Design Philosophy

[CN] (RZAREE, SZ2TEr). MWK, BAEIESE, BRZE, AZAX.
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EquiMus is open-source at https://github.com/fly-pigTH/EquiMus
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