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Abstract—Dynamic modeling and control are critical for un-
leashing soft robots’ potential, yet remain challenging due to
their complex constitutive behaviors and real-world operating
conditions. Bio-inspired musculoskeletal robots, which integrate
rigid skeletons with soft actuators, combine high load-bearing
capacity with inherent flexibility. Although actuation dynamics
have been studied through experimental methods and surrogate
models, accurate and effective modeling and simulation remain a
significant challenge, especially for large-scale hybrid rigid—soft
robots with continuously distributed mass, kinematic loops, and
diverse motion modes.

To address these challenges, we propose EquiMus, an energy-
equivalent dynamic modeling framework and MuJoCo-based
simulation for musculoskeletal rigid—soft hybrid robots with
linear elastic actuators. The equivalence and effectiveness of the
proposed approach are validated and examined through both
simulations and real-world experiments on a bionic robotic leg.
EquiMus further demonstrates its utility for downstream tasks,
including controller design and learning-based control strategies.

Index Terms—Modeling, control, and learning for soft robots,
biologically-inspired robots, dynamics, simulation and animation.

I. INTRODUCTION

IO-INSPIRED robots have been extensively studied and

developed in recent years [1], [2], [3], [4], [5]. Among
them, articulated musculoskeletal robots feature rigid skeletons
and soft artificial muscles, enhancing the robot’s load capacity
and intrinsic adaptability [6], [7], [8]. In these systems, elastic
actuators (EAs) boast high energy density and inherent compli-
ance [9]. Dynamic modeling and simulation of these systems
lay important foundations for their design, control [10], and
data generation [11].

However, classical rigid-body models do not capture
configuration-dependent mass redistribution, large elastic
strains with damping, or loop-closure constraints in rigid—soft
hybrids [12]. In practice, soft actuators often have non-
negligible mass in load-bearing limbs, so their inertia must
be modeled alongside actuation. As the configuration changes,
composite inertia varies, and kinematic loops frequently arise
in such systems, both of which complicate the dynamics
and make per-robot Lagrangian derivations labor-intensive and
hard to generalize.
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Meanwhile, rigid-body robotics has advanced rapidly, fueled
by physics engines and graphics computation [13]. Simula-
tors such as PyBullet [14], MuJoCo (Multi-Joint dynamics
with Contact) [15] and Isaac Gym [16] offer standardized
environments well suited for data-driven control and design
[17], [18], [19]. Although MuJoCo can mimic viscoelastic
behavior [20], [21], it omits actuator inertia, limiting accurate
simulation of coupled rigid—soft dynamics. To bridge these
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Fig. 1. Overview and motivation of the proposed energy-equivalent modeling
framework EquiMus.

gaps, we present EquiMus', an energy-equivalent modeling
and MuJoCo-based simulation framework for rigid—soft hybrid
robots with linear elastic actuators. As shown in Fig. 1,
EquiMus tackles three challenges: (i) the actuator inertia and
variable mass distribution during motion; (ii) loop-closure
within musculoskeletal chains; (iii) plug-and-play integration
with model-based and learning-based controllers. The main
contributions of this work are summarized as:

1) Modeling: a compact energy-equivalent lumped-mass
formulation that maps elastic actuator dynamics to
discrete rigid-body elements, preserving energies and
matching the virtual work of damping and actuation;

2) Implementation: a MuJoCo realization with loop-
closure constraints, smooth elastic actuator dynamics,
and out-of-the-box reinforcement learning (RL) compat-
ibility;

3) Validation and Applications: experiments on a pneu-
matic leg with fluidic elastomer actuators (FEAs), show
close sim-to-real agreement and enable PID auto-tuning,
model-based control, and RL-based control.

II. LITERATURE REVIEW
A. Dynamic Modeling of Soft Robots
Modeling soft robots remains challenging due to inherent
continuum properties, nonlinear material behaviors, and high-

!Code and derivation are available at https://github.com/fly-pig TH/EquiMus


https://github.com/fly-pigTH/EquiMus
https://arxiv.org/abs/2511.07887v1

dimensional configuration spaces. Among them, articulated
soft robots, which are rigid—soft hybrids with discrete links
and soft actuation, represent a distinct subclass that requires
tailored modeling considerations. Existing methods can be
categorized into four mainstream approaches [22]:

Continuum mechanics models (e.g., Cosserat rod and
nonlinear Euler-Bernoulli beam formulations [23]) deliver
high fidelity for slender, continuously deformable structures
but incur prohibitive computation, making them unsuitable for
real-time control in articulated hybrids.

Geometrical models (e.g., piecewise-constant-curvature
[24]) approximate deformations via low-dimensional curves,
trading expressiveness for computational speed for continuum
manipulators, but limited for multi-link hybrids.

Discrete material models condense mass and compli-
ance into discrete elements [25], balancing accuracy and
efficiency—suited for articulated hybrids with distributed elas-
ticity.

Surrogate models apply neural networks (NNs) to model
nonlinear behaviors [26] but demand extensive training data,
relying on fast simulators for dataset generation.

Accordingly, we adopt a discrete (lumped-mass) approach,
because it preserves actuator inertia at real-time rates and
strikes the desired fidelity-efficiency balance.

B. Simulation of Soft Robots

Hand-crafting dynamic models for soft/rigid—soft systems
is costly, and coupling them with modern controllers (e.g.,
reinforcement learning) is labor-intensive. With advances in
biomechanics and graphics, simulators have become the de-
fault for design, analysis, and data generation.

Early PyBullet-based, continuum-oriented efforts such as
SoMo [12] and SoMoGym [27] approximate soft manipulators
via segment discretization with beam theory. These methods
capture quasi-static behavior effectively but lack full dynamics.
Moreover, because the Unified Robot Description Format
(URDF) assumes open chains, they cannot represent the loop
closures [28] that are common in articulated musculoskeletal
robots. More physics-rich simulators (e.g., SoftManiSim [29]
and Jitosho’s framework [30]) incorporate advanced Cosser-
at/beam theory and demonstrate RL-based locomotion. How-
ever, they are typically confined to centimeter-scale tasks and
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incur significant computational cost, limiting real-time control
studies. FEM-based SOFA (Simulation Open Framework Ar-
chitecture) [31] offers high physical fidelity for soft tissues
and continuum structures but is likewise heavy for real-time
applications.

By contrast, MuJoCo [15] has become a preferred platform
for articulated systems and has been largely used for model-
based/data-driven control and sim-to-sim testing of rigid-
body robots [32], [33]. Its XML format supports kinematic
loops and musculoskeletal simulations [20], [21]. However,
MuJoCo’s actuators are still modeled as massless elements,
limiting its ability to capture dynamic mass redistribution
(DMR)-i.e., changes in the mass distribution of embedded soft
actuators during motions. OpenSim [34], [35], [36] shares this
limitation.

Classic simulators are summarized in Table I. It highlights
key capabilities such as support for kinematic loops and the
ability to handle dynamic mass redistribution. In summary,
off-the-shelf simulators still have limitations in realizing the
dynamic modeling and simulations for musculoskeletal robots.

III. METHODS

A. Basic Assumptions

An elastic actuator, illustrated in Fig. 2, has endpoints A, B,
mass m, stiffness k, damping c, rest length [y, current length
[, and driving force F. The actuator is assumed to act as a
driving unit in the rigid—soft hybrid robot and follow basic
conditions:

o Unidirectional and Uniform Deformation: The actua-
tor, with a negligible radial size, is modeled as a one-
dimensional linear element with a uniform mass distribu-
tion, with a linear density, denoted as p = m/I.

o Axial Driving Forces: The actuator is subjected to a
pair of equal and axial forces, denoted as F, applied at
endpoints A and B along its axis.

o Spring-Mass-Damper System: With one end fixed, we
assume that the actuator behaves as a second-order system
with constant elasticity and viscosity [37] [38].

TABLE I
COMPARISON OF DIFFERENT SIMULATION FRAMEWORKS

Framework Modeling Approach Physics Complexity Kinematic Loop R-S Hybrid Robots DMR
PyBullet/Gazebo rigid-body low X X X
Webots rigid-body low X X X
Elastica Cosserat rods medium X X v
SOFA FEM, finite element method high v v v
SoMo/SoMoGym rigid-body low X v v
SoftManiSim rigid-body + Cosserat medium X v v
OpenSim rigid-body + muscle model medium-high v v X
MuJoCo/MyoSim rigid-body + muscle model medium v v X
EquiMus* rigid-body equivalence low v v v

R-S = rigid—soft; DMR = dynamic mass redistribution (in this work).
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B. Energy-Based Perspective on Dynamic Modeling

The robot dynamics are formulated using the vector form
of the Lagrangian equation,

d d 9

(dt aq a )(LEA +L0ther>

QEA + Qother (1)
where L, q, and Q denote the Lagrangian, generalized coor-
dinates, and generalized forces respectively. We decompose L
and Q into contributions from elastic actuators (EA) and rigid
structures (other). Logher and Qqher depend on q, its derivative
q, and external inputs. From an energy perspective, if the
energy and forces of the elastic actuator can be discretized
with rigid-body equivalents, the overall dynamics remain in-
variant, regardless of the specific configuration and type of
soft actuators.

C. Energy-Equivalent Model

Inspired by the lumped mass method [22], [25], we dis-
cretize the actuator into an assumed energy-equivalent mass-
spring-damper array. This formulation integrates the dynamics
of the soft actuator into a multi-rigid-body representation,
accounting for the elastoplastic behavior, variable mass distri-
bution, and kinematic loops. The theoretical proof is provided
through constructive modeling and parameter derivation.

Let 75 and 7g denote the position vectors of endpoints A
and B in the global (inertial) frame, respectively. Suppose
N mass points are distributed along the elastic actuator at
positions Xi,...,Xy, with corresponding masses mj,...,my.
Each adjacent pair of points is connected by a linear actuator
characterized by stiffness k;, damping c;, original length I,
and internal driving force F;, where i =1,...,N—1. For conve-
nience, X; is reduced to 1D coordinate &; along the actuator’s
length, such that. %(&;) = (1 — &)7a + &7g. In this section,
energy quantities in the equivalent model are denoted by *.

1) Equivalence of Gravitational Potential Energy: The
gravitational potential energy of the actuator and its equivalent
rigid-body model is given by

r -
Ve = Emgl« (Fa+78) (2)
A N - N - . "
Ve=3 . migk-X; =Y. migk-[(1-&)Fa+&T8]  (3)

where % denotes the unit vector of the ground frame, oriented
opposite to gravity.

2) Equivalence of Kinetic Energy: Assuming uniform lin-
ear elongation, the velocity of the microelement dx at position
x along the actuator varies linearly, V(x) = Va - I_Tx +vp-7. By
integrating over the entire length, the total kinetic energy of
the actuator is given by:

| 1
T = / 2 :Em

T=szzll( — &)Va+ &R (5)

i=1

(Va -V + Vi +v3) 4)

Let y; = 7¢. Energy-equivalence requires Vg =Vg, T=T.By
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Fig. 2. Schematic diagram of the soft actuator and its lumped mass
distribution. The actuator is subjected to gravity, driving forces F, elastic
forces, viscous resistance cl at endpoints, and constraint forces F; from the
rigid skeletons. 07 denotes the virtual displacement. Since F, is internal to
the system, it is excluded from the Lagrangian dynamics. Driving forces and
viscous forces are defined as positive as shown in figure.

substituting into Egs. (2), (3), (4) and (5),

F—T 1 1 Hi 1
; _V}<=> & - &l =12 ®
=) e &) | L

The linear system admits solutions only if N > 3. When N =
3, the coefficient matrix reduces to a convertible 3rd-order
Vandermonde matrix for any (&, &;,&3) that meets & # &, #
&3, ensuring the existence of a solution. That is the necessary
condition of a rigid discrete equivalent model.

Without loss of generality, we set & =0 and & =1, to
anchor the ends of the actuator to the skeleton. To achieve
better symmetry and a simpler constraint of length we select
&= 2, resulting in the solution (| = 6, L =%, and U3 =
This solution corresponds to Eq. (7) and (8) Addltlonally,
the midpoint is the optimal choice for interpolation accuracy
according to Simpson’s interpolation theory.

- |1, 2 Pa+7s, 1, -
nggk[6rA+3( : )+6r3} AN

1 [1, 2 ¥a+8m 1,] 4

T=-m - S| =71
2 [6 A+q’( 2 ) +6VB ®)

3) Generalized Forces and Elastic Potential Energy: Under
the above assumptions, and by analogy with series rules
for springs and dampers, dynamic equivalence holds if the
following conditions are met:

:FzzF, :(,‘2:26‘7
©)
= ky = 2k,

The elastic potential energy and virtual work brought by
generalized forces (driving force F' and the damping force c/)
matches:

%= ghi(t/2 1o + k»(Z/z—l»o)
1
ZZXE k[(l—lo)/Z] k[(l—lo)} =Ve (10)
5W=( — [/2)eCA 5rCA—|—(F7—czl/2 écp - O7cp
:2X(F7€l)g BA - 1/2078A = W (11D
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where €ap denotes the unit vector from A to B. According
to the principle of virtual work, the equivalence in virtual
work implies that of generalized forces. Consequently, the
transformation constructed above preserves all physical terms,
resulting in full equivalence of the system dynamics.

D. Summary

Shown in Fig. 2, the dynamic model of the linear elastic
actuator can be equivalently represented by a discrete mass
system. The method follows a 3-2-1 approach:

« 3 Mass Points: The actuator is discretized into three mass
points—two fixed at each end and one at the midpoint—
with %m, %m, and %m respectively.

2 Linear Actuators: Two motors connect the masses,
each with stiffness 2k, damping coefficient 2c, rest length
of ly/2, and driving forces F.

1 Constraint: An equality constraint is implicitly en-
forced through the above conditions, ensuring that the
elongation of both actuator segments remain identical.

Our method achieves a balanced trade-off between physi-
cal fidelity and computational efficiency. On one hand, the
equivalent model is rigorously constructed based on energy
equivalence, carefully accounting for the variable mass distri-
bution, thereby preserving high accuracy. On the other hand,
although the soft actuator is discretized into a multi-rigid-
body representation, the number of equivalent elements and
constraints remains comparable to that of the original actuator,
substantially reducing computational overhead.

E. Software Implementation

We choose MuJoCo [15] as simulation platform due to its
effective support for kinematic loops. The energy-equivalent
implementation of the linear elastic actuator is illustrated in
Fig. 3. Parameters are configured with a 1:4:1 <mass> distri-
bution, double <stiffness> and <damping> coefficients,
and half <springref> (rest length). An <equality> on
joint constraint maintains equal actuator lengths, keeping the
middle mass point fixed at the geometric midpoint.

IV. EXPERIMENTS AND RESULTS
A. Experimental Platform of rigid—soft Hybrid Robotic Leg

1) Overview of System: We validate EquiMus on a pneu-
matic rigid—soft robotic leg [9]. The leg, shown in Fig. 4,
consists of a base, hip joint, thigh, knee joint, calf, a mono-
joint actuator (MAA), and a bi-joint actuator (BAA). Rigid
links are 3D printed from nylon, and linear elastic actuators are
cast from polyurethane rubber. The overall system includes:

o Actuation: Two pneumatic artificial muscles (PAMs) are
driven by proportional pressure valves (VPPE-3-1/8-6-
010, Festo). Each actuator is commanded in the range
of 0-50 kPa [9] (air supply up to 600 kPa).

« Sensoring: Joint motion is tracked by a motion-capture
system (Optitrack, Natural Point) at 120 Hz.

o Control: A ROS2-based PC receives state estimates and
outputs valve pressure commands via DACs.

The actuators’ physical parameters are summarized in Table II.

TABLE 11
ACTUATOR PROPERTIES

Actuator Mass Len. Damp. Stiff. Area
(kg) (m) (Ns/m) ~ (N/m) (m?)
MAA 0.1865 0.1744 10.8 367.8  6.54x 1074
BAA 0.2727  0.2536 11.3 2918  6.37x1074

2) Kinematic Model of Robotic Leg: We consider two
phases: swing (base fixed) and stance (foot in contact). Inputs
are actuator pressures P = [Py, P»], which generate axial forces
F = [F,F] = [S1P1,5:P,] via the effective cross-sectional
areas S;. The outputs are joint angles q = [0}, 6,] of the hip
and knee.

For swing phase, a coordinate system is established as
shown in Fig. 4 (B), with the origin O located at the hip joint.
The positions and velocities of all key points, O,A,...H, as
well as the lengths of the two actuators, [, >, can be computed
analytically through forward kinematics.

For the stance phase, by choosing the foot position as the
origin of the reference frame, the kinematic model can be
reformulated via a coordinate transformation rf = r® — OF.
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Fig. 4. Comparison between simulation and physical implementation of the robotic leg system. (A) MuJoCo-based energy-equivalent model of the robotic
leg, illustrating the complete structure and the corresponding connectivity graph. Black nodes represent rigid links; black solid lines indicate tree joints; black
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on the BAA structure. (B) Physical experimental setup, including the coordinate frame of the bionic robotic leg with pneumatic artificial muscles and the
OptiTrack motion capture system. A simplified force analysis diagram is also included to aid understanding of the joint loading conditions.

B. Implementation of Dynamic Simulations

1) Theoretical Dynamic Model and Simulation: Based on
Egs. (2), (4), (10), and (11), we derived the dynamics of
the robotic leg via the Euler-Lagrange equation, obtaining
q = fiheo(q,?). Numerical simulation was implemented in
MATLAB/SymPy using the ode45 solver, which serves as
the theoretical ground truth.

2) Software Pipeline: The topology transformation and the
schematic diagram of the mechanism are shown in Fig. 4. We
implemented the equivalent model of the robotic foot through
a systematic process. A URDF file (with loop closures opened)
was converted to MJCF, and the 3-2-1 structure (Sec. III-D)
was added with the necessary bodies/joints and constraints.
Equality constraints were introduced to enforce the actuator
lengths and their connections to the skeleton. The simulator
runs at 141.9x real time (mean wall-clock step 0.0071 ms;
Ar = 0.005 s), sufficient for real-time control and repeated
simulation experiments.

C. Verification in Simulation

1) Static Equivalence: For each static state q sampled in
the workspace Q = {(6;, 6,) | 6, € [7/6,2%n/3], 6, € [0,7/2]}
we compared equilibrium configurations of the theoretical and
equivalent models under identical balancing force inputs F =
f(q). Both models shared the same parameters (110, /20,k1,k2)
with small perturbations, and ¢; = ¢ ~ 10 Ns/m. Table III
summarizes errors over 10,000 trials: RMSEs (root-mean-
square error) for 6 is < 0.001 rad and for 6, is < 0.06 rad,
indicating close static agreement.

2) Dynamic Equivalence:

a) Swing Phase: We uniformly sampled (q, q') € Q x Q,
computed F = f(q) and F' = f(q’'), and finally recorded the
step response from the static state with F to that of F'. Of
10,000 trials, 2,407 valid trajectories remained after discarding
joint-limit violations.

b) Stance Phase: To test the generalization of our
method, we change the working condition to stance phase.
The init state is chosen as standing still (6, = 7/2,6, = 0),
the impulse force F' as (10 N, 10 N).

TABLE III
ERROR COMPARISON BETWEEN THEORETICAL AND EQUIVALENT
MODELS, IN STATIC AND DYNAMIC TESTS

Metric Static Dynamic-Swing  Dynamic-Stance
91/92 91/92 61/92
RMSE (rad)  0.00096 / 0.00574 0.00094 / 0.00586 0.01693 / 0.03000

MaxAE (rad) 0.00369 / 0.01452 0.00379 / 0.01559 0.04673 / 0.08805

The error of both phases are summarized in Table III, and
trajectories of several experiments are visualized in Fig. 5.
The max absolute error (MaxAE) of all experiments of swing
phase is less than 0.016 rad (~ 1 deg). The error of stance
phase is about 5 times larger, which is still a small value
compared to the workspace. The larger error may be caused
by the relatively weak constraint between the foot and the
ground. The results show that the equivalent model exhibits a
small deviation from the theoretical model in step response,
confirming the effectiveness and accuracy of the proposed
equivalent modeling methods.

3) Morphology Generalization: We evaluated EquiMus on
a randomized 3-DOF musculoskeletal robotic leg, varying
muscle routing and joint-connection topology. Under identical
inputs, time step, and solver settings, we applied a multi-
pulse actuation sequence and compared joint trajectories from
the analytical model (SymPy) against those from EquiMus,
obtaining per-joint RMSEs of 0.0035, 0.0066, and 0.0041 rad,
as illustrated in Fig.6. Those small errors validate that the
energy-equivalent unit generalizes well to novel topologies,
supporting the structural generalization of the framework.

D. Physical Validation

To make comparison of the simulation with real systems,
parameter identification is conducted at both the actuator level
and the system level, aiming to capture the key characteristics
of individual actuators as well as the global static and dynamic
behavior of the robotic leg.

1) Actuator Calibration: Actuator-level calibration was
performed to determine parameters such as m and .
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2) Static Parameter Identification and Verification: We
tested the steady-state response with specific pressure com-
mands. The data was recorded in the form (6;, 6,, Py, P,), rep-
resenting the joint angles and corresponding actuator pressures
at equilibrium. We used theoretical static model to calibrate
static parameters, then calibration on (ki,kz,s1,s2) became a
linear regression problem.

In the experiment, the pressure was selected from 0-50 kPa
at intervals of 10 kPa, totaling 36 experiments (Set B). After
excluding the experiments with antagonistic situations, 13
configurations [Py, Ps,0;,6;] are remained, forming Set A,
which is used for system-level parameter identification. The
results are listed in Tab. V. The RMSE of pressure is 0.887 kPa
for P; and 0.861 kPa for P, both below 2% of the maximum
applied pressure (50 kPa), indicating a reliable regression
accuracy.

TABLE IV
STATIC VALIDATION RESULTS ACROSS TWO EVALUATION SETS

Evaluation Set

Set A (13 poses)
Set B (36 poses)

RMSE 91 RMSE 92 MaxAE 91 MaxAE 92

0.0170 0.0566 0.0336 0.1463
0.0203 0.0416 0.0418 0.1463

Note: E denotes error of pressure, expressed in kPa.
Set A: Used for parameter identification under moderate configurations.
Set B: Includes edge cases with joint limits to test robustness.

The parameters identified from Set A were then used to
simulate the same pressure inputs for both configurations of
Set A and Set B. The static joint angles were compared
against experimental measurements. For Set A, compared
to the actual positions, only one data point had an error

exceeding 0.087 rad. This verifies the accuracy of the static
model. As reported in Table IV, the model maintains low
angular errors in both Set A and B. This confirms that our
energy-equivalent modeling framework generalizes well, even
in highly nonlinear and boundary-range conditions. Notably,
larger errors in 6, tend to occur when 0/6; is near its joint
limit. For example, MaxAE of 8, in Set A and Set B occur
simultaneously at 68y, = 2.068,0.18 rad, where 6; is very
close to its upper bound 2/3 7. In such poses, nonlinear
effects caused by static friction and boundary constraints
become more significant, making accurate simulation more
challenging. While this introduces slight discrepancies, the
overall predictive performance remains robust and suitable for
downstream applications such as control and planning.

TABLE V
COMPARISON OF STATICALLY AND DYNAMICALLY IDENTIFIED
PARAMETERS

Parameter Static Value Dynamic Value
ki (N/m) 203.95 265.82

ky (N/m) 105.07 110.36

51 (m?) 0.000411 0.000403

57 (m?) 0.000324 0.000436
l10 (m) 0.1642 0.1803

Ipo (m) 0.2579 0.2565

c1 (Ns/m) - 12.48

¢> (Ns/m) - 24.79

Chip (Ns/m) - 0.524
Cknee (NS/m) - 0.062

3) Dynamic Calibration and Verification: We tested
step response in real world experiments and simula-
tions to calibrate the main dynamic parameters ¢ =
[kl7k2,517527110;lZOaclaC%Chip»Cknee]~ We tracked the actual
joint trajectory 7;(f) and the simulated trajectory 7;(¢,c),
respectively. We continued to use 13 groups got in last
experiments. Finally we wanted to minimize the position error

with the interpolation form of trajectory:

13
¢ = argmin ZE(Q, 7;(c)).

i=1
Define the error E(6;,0,) = MSE(7(¢)) + AMSE(sgn(1(z)))
Here, A (set as 100 in experiments) is the weighting parameter
that penalizes angular velocity signal error. The error repre-
sents the deviation in the system’s motion state [6,6,, 6, 6;].
Our work employed differential evolution algorithm (DE)
to do optimizations, with up to 10,000 iterations, and a popu-

(12)
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lation size of 25. Final parameters are shown in Table V. Most
of the parameters calibrated from the dynamic identification
is closer to that calibrated from the static identification. The
RMSE of the angle is under 0.03253 rad for all experiments.
It indicates the validness of the equivalent method. The error
may because of the nonlinearity of the actuator, which carry
in some bias on the actuator dynamics.

In both MuJoCo simulation and real-world experiments, we
commanded the robot to follow a triangular trajectory using
a sequence of pressure steps. The resulting joint trajectories
are shown in Fig. 7. They exhibit similar dynamic charac-
teristics. The RMSE of 0, and 6, are 0.092 and 0.174 rad
respectively. Some discrepancies between simulated and actual
joint trajectories, especially in 6, arise due to the joint’s
higher sensitivity to system disturbances. The presence of
static friction may cause sticking or abrupt transitions and the
effect of control latency in pneumatic valves may introduces
slight time mismatches.

Sim-Real Comparision of Joint Angles
200 T

0 (real) —— 03 (sim)
6, (real) — 0 (sim)

n

=

Angle (rad)

%

(=]

10 20 30
Time (s)

(A) Open Loop Control Command Comparison

(B) Ball Kicking with Learning

Fig. 7. (A) Tracking performance of the triangular trajectory in both
simulation and hardware experiments. Each vertex corresponds to a pressure
command P 5: (1) 6.15,2.73 kPa; (2) 3.76,7.26 kPa; (3) 19.80,8.52 kPa. (B)
The robotic leg learns to kick a ball based on reinforcement learning.

4) Baseline Comparison with Native MuJoCo Implementa-
tion: To benchmark the effectiveness of our energy-equivalent
formulation, we constructed a baseline using MuJoCo’s native
motor actuators configured as single spring-damper elements
between bodies, without internal mass or constraint enforce-
ment. The simulation was run under the same pressure inputs
and mechanical boundary conditions as in our full model.
As shown in Table VI, the baseline’s accuracy deteriorates
significantly. These results underscore the necessity of incor-
porating intermediate mass elements and equality constraints
to more accurately capture the actuator’s physical behavior.
This comparison highlights the advantages of our approach in
preserving both simulation fidelity and real-time performance,
making it well-suited for reinforcement learning and control
applications.

TABLE VI
BASELINE COMPARISON BETWEEN EQUIMUS AND NATIVE MuJoCo.

Method RMSE (rad) Notes
EquiMus 0.032522 Energy-equivalent formulation
PureMuJoCo 0.432144 Native actuator, lumped model

(1) MAA - Mass Parameters (2) MAA - Elastic Parameters

0.5
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Fig. 8. Sensitivity analysis of the model parameters

E. Sensitivity Analysis of Model Parameters

To evaluate robustness under parametric uncertainty, we
perturbed key actuator parameters (m, k, I, ¢, s) by £1%,
+5%, £10% and measured the change in joint-angle RMSE
with respect to real-world data. As shown in Fig. 8, the model
remains robust under small perturbations, though rest lengths
(110, lo) and lower-link masses exhibit higher sensitivity.
These critical parameters were precisely calibrated to ensure
model fidelity during implementation.

F. Application-Driven Demonstrations

Built on MuJoCo, EquiMus leverages that ecosystem’s
XML tooling, Gym-compatible interfaces, and mainstream
RL/control libraries, enabling direct integration into standard
pipelines with minimal additional code. We illustrated three
representative usages. (i) Reinforcement learning: A ball-
kicking task was achieved with PPO (Stable-Baselines3), with
results shown in Fig. 7 and the video. (ii) Parameter explo-
ration/identification: Fast batched simulation supports sweeps
of parameter like stiffness for system design and identification.
(iii)) Model-based control: Identified dynamics are deployable
within MPC frameworks [39]. We also provide results of an
auto PID tuning experiment at PID_AutoTuning. These
demonstrations indicate that EquiMus is not only physically
consistent with hardware but also operationally practical for
learning and control.

V. CONCLUSION

This letter proposed EquiMus, an energy-equivalent dynam-
ics and simulation for the rigid—soft musculoskeletal robots
with linear elastic actuators. By lumping actuator inertia with
a 3-2-1 discretization, the method captures dynamic mass
redistribution, supports loop-closure constraints in MuJoCo,
and remains real-time capable. Experiments on a pneumatic
leg show close sim-to-real agreement and enable downstream


https://github.com/fly-pigTH/EquiMus/tree/main/src/application/PID_AutoTuning/ReadMe.md

usage in PID auto-tuning, model-based control, and reinforce-
ment learning. A current limitation is the omission of internal
actuator nonlinearities; the modular energy-based structure
readily admits richer constitutive models as future work. We
hope EquiMus provides a novel perspective and serves as a
small step toward bridging the gap between soft robotics and
embodied intelligence.
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